Stochastic, Spatially Explicit Models

Tim Carpenter,¹ Lasse Engbo Christiansen,² Josh O'Brien,¹ and Heinrich zu Dohna¹

¹Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, UCD
²Mathematical Statistics, DTU Informatics, Technical University of Denmark.

Model Categorizations

- Continuous vs. Discrete
- Compartmental (SI, SIS, SIR, SLICR...) vs. Individual Based (Microsimulation Model)
- Behavioral, Descriptive, and Normative
- Analytic vs. Numeric
- Deterministic vs. Stochastic
- Spatial vs. Non-spatial

Deterministic vs. Stochastic

- Deterministic
 - Single input/output
 - No element of chance
 - Mean, median, mode, 95th or 99th%, extreme value(s)
- Stochastic (probabilistic or random)
 - Incorporates an element of chance
 - Reflects uncertainty and variability
 - Multiple input values and outputs
 - Statistical distribution based

Defining Stochastic Inputs

- Expert opinion
 - Survey
 - Individual interaction
- Data

╢

- Dataset
- Survey
- Literature

Potential Stochastic Inputs

┤|||

Defining Stochastic Inputs

Defining Stochastic Inputs

(number of adequate contacts (k); health state durations (D_i))

- Deterministic
- Stochastic
 - Farm level
 - Dichotomous herd categorization
 - Homogeneous animal characteristics
 - Truly individual animal

Flow diagram of Reed-Frost (SIR) model

Deterministic SIR Model

Stochastic SIR Model (N = 1001, K = 2)

Stochastic SLIC (no individual animal)

╢

No individual animal model

Stochastic SLIC (farm level)

Durations distributed to farms

Time (days)

Stochastic SLIC (true Individual Animal Based)

Durations distributed to individuals

Time (days)

SIR Models

Time (days)

SIS Models

Time (days)

Deterministic vs. Stochastic IAB SLIC Model (N = 1001; Iterations =10, 100, 1000)

Deterministic vs. Stochastic Herd Level SLIC Model (N = 1001; Iterations =10, 100, 1000)

Stochastic Model Conclusions

- Produce ranges of outcomes, which may provide more information than "average" results from deterministic models
- May avoid unreliable predictions resulting from epidemic "burn out"
- Caution should be used when using increased iterations (CIs vs. PIs)
- More (iterations) is better but "costs" more
- Require additional data/information

Spatial Models

Davis Animal Disease Simulation (DADS) Model

standard bre Wate exclusion

el including, faculty, analysis, programmers, veterinariana, administrative staff and g countries working at the Center. We moved to our current site at 279 Cousteau Place

st of the main UC Duvis campus) in September of 2004

No.

8 Swine (farrow-to-wean) 15 Sheep (range flock)

1

Beef (cow-calf

- Spatial
- Stochastic
- Data driven
 - Resource constrainable
- Highly individual animal based
- National level spread & control

Populating Spatial Models

- Surveys
- Federal level data (USDA National Agriculture Statistics Service (NASS))
- Industry collaborators
- State collaborators
- Merged databases

Use of heterogeneous operation-specific contact parameters changes predictions for foot-and-mouth disease outbreaks in complex simulation models

Bradley F. Dickey¹, Tim E. Carpenter^{*}, Scott M. Bartell²

Center for Animal Disease Modeling and Surveillance, VM: CADMS, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, United States

Received 21 November 2005; received in revised form 15 March 2008; accepted 24 April 2008

Geographic Data

Geolocation Data: CA Dairies

Simulation Results: Random vs. Actual Locations

Predicted number of infected herds: actual vs. randomized dairy locations 600 max 500 Total herds infected 400 300 200 100 0 100 120 0 20 40 60 80 Days

- NASS vs. true data sims.
 - Min. similar but early end
 - Mean 60% underestimate
 - Max. 75% underestimate

Implications

- Underestimates epidemic impact and duration
- Potentially misdirects resources
- No info. > misinformation?

Circular Controls in UK 2007

- Premises statuses updated daily
- "Target" constantly changing
- Resource allocation efficiency?
- Disease control impact?

Circular vs. Areal Surveillance

Regional control benefits

- 10% decrease in IPs
- 10% decrease in epidemic duration
- 40% increase affected premises
- 80% decrease in surveillance zone definition

Additional applications

- Vaccination/culling
- Movement
- Expansion to states or regions vs. counties

Intentional Introduction: 5 herds, 4 states

Importance of Stochastic and Spatial Components: Wild Pigs

Spatial Model Conclusions

- Spatial models enhance visualization of an epidemic
- They may more accurately reflect spatial relationships, e.g. LAS, controls and spread
- Computationally, they make life very difficult

Stochastic, Spatially Explicit Model Conclusions

- Need for data
 - Spatial
 - Contact (DC, IDC)
- Need for complexity (stoch., spatial)
- Importance of model precision/predictability
- Need to consider model use during an epidemic with latent variable information

FARM BUREAU FEDERATION

Nowers

Association

Professiona,

ff

California Dairy Campaign

Funding

Collaboration – CADMS, CDFA, Texas A&M, WUD, CDC, PDHGA, CWGA, CCA, ARPAS, VMTRC, USDA, CDFG, ARE (UCD), LLNL, DK, UK, NZ

Questions?